Imagen de cubierta local
Imagen de cubierta local
Imagen de portada de Amazon
Imagen de Amazon.com

Cálculo numérico : bailando con números y jugando con el ordenador / Rafael Pla-López.

Por: Tipo de material: TextoTextoSeries Grandes ideas de las matemáticasEditor: [Barcelona] : EMSE EDAPP, S.L. ; [Madrid] : Prisanoticias Coleccionables, [2019]Fecha de copyright: ©2019Descripción: 144 páginas : ilustraciones, diagramas ; 23 cmTipo de contenido:
  • Texto
Tipo de medio:
  • sin mediación
Tipo de soporte:
  • volumen
ISBN:
  • 9788417811938
  • 8417811931
Tema(s): Clasificación CDD:
  • 511.8 P696c
Contenidos:
Aproximando (Stanislaw Ulam y el método de Montecarlo) -- Generación de números seudoaleatorios y operadores: de Montecarlo -- Adivinando la curva -- Dilatación relativista del tiempo -- Ámbito de aplicación de la mecánica relativista -- Estimando el total Siguiendo el camino -- Buscando el punto -- Catástrofe -- Explorador newtoniano -- Un deporte de riesgo -- ¿Viajando en el tiempo? -- Resolución newtoniana de un problema relativista -- En un universo alternativo -- Apéndice -- Bibliografía recomendada.
Resumen: Hubo un tiempo en el que las matemáticas se realizaban únicamente con papel y pluma. Esas matemáticas permitian acceder a verdades absolutas, a las que se llegaba por razonamientos puramente formales, independientes de la experiencia. Los matemáticos se vanagloriaban de ello y llamaban a su disciplina «ciencia exacta>. Pero esas matemáticas tenían una pega: a pesar de que sus métodos eran poderosos, no contaban con la capacidad de resolver muchos de los problemas que se planteaban. En la década de 1940, los científicos que estaban intentando desarrollar la bomba atómica en el Laboratorio Nacional de Los Álamos, en Estados Unidos, se encontraron con uno de esos problemas. Y la solución pasó por emplear técnicas de cálculo numérico basadas en la ejecución masiva de cálculos sencillos. Pero no realizados por humanos, sino por máquinas programadas por humanos. Y aunque el resultado ya no podia ser calificado de «ciencia exacta», ofrecía soluciones matemáticas más próximas a la vida real. En este volumen se abordan la integración polinómica, la integración numérica, la ecuación diferencial y, a través de aproximaciones sucesivas, se busca el punto que da la solución de una ecuación. editor
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura topográfica Estado Fecha de vencimiento Código de barras
Libro general Libro general Biblioteca Uniagraria General 511.8 / P696c (Navegar estantería(Abre debajo)) Disponible 0100030430

Bibliografía: páginas 143-144

Aproximando (Stanislaw Ulam y el método de Montecarlo) -- Generación de números seudoaleatorios y operadores: de Montecarlo -- Adivinando la curva -- Dilatación relativista del tiempo -- Ámbito de aplicación de la mecánica relativista -- Estimando el total Siguiendo el camino -- Buscando el punto -- Catástrofe -- Explorador newtoniano -- Un deporte de riesgo -- ¿Viajando en el tiempo? -- Resolución newtoniana de un problema relativista -- En un universo alternativo -- Apéndice -- Bibliografía recomendada.

Hubo un tiempo en el que las matemáticas se realizaban únicamente con papel y pluma. Esas matemáticas permitian acceder a verdades absolutas, a las que se llegaba por razonamientos puramente formales, independientes de la experiencia. Los matemáticos se vanagloriaban de ello y llamaban a su disciplina «ciencia exacta>. Pero esas matemáticas tenían una pega: a pesar de que sus métodos eran poderosos, no contaban con la capacidad de resolver muchos de los problemas que se planteaban. En la década de 1940, los científicos que estaban intentando desarrollar la bomba atómica en el Laboratorio Nacional de Los Álamos, en Estados Unidos, se encontraron con uno de esos problemas. Y la solución pasó por emplear técnicas de cálculo numérico basadas en la ejecución masiva de cálculos sencillos. Pero no realizados por humanos, sino por máquinas programadas por humanos. Y aunque el resultado ya no podia ser calificado de «ciencia exacta», ofrecía soluciones matemáticas más próximas a la vida real. En este volumen se abordan la integración polinómica, la integración numérica, la ecuación diferencial y, a través de aproximaciones sucesivas, se busca el punto que da la solución de una ecuación. editor

No hay comentarios en este titulo.

para colocar un comentario.

Haga clic en una imagen para verla en el visor de imágenes

Imagen de cubierta local